On the support t-designs of extremal Type III and IV codes

نویسندگان

چکیده

Let C be an extremal Type III or IV code and $$D_{w}$$ the support design of for weight w. We introduce numbers, $$\delta (C)$$ s(C), as follows: is largest integer t such that, all weights, a t-design; s(C) denotes that w exists t-design. Herein, we consider possible values s(C).

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Extremal Maximal Self-orthogonal Codes of Type I-iv

For a Type T ∈ {I, II, III, IV} and length N where there exists no self-dual Type T code of length N , upper bounds on the minimum weight of the dual code of a self-orthogonal Type T code of length N are given, allowing the notion of dual extremal codes. It is proven that the Hamming weight enumerator of a dual extremal maximal self-orthogonal code of a given length is unique.

متن کامل

Tricolore 3-designs in Type III codes

A split complete weight enumerator in six variables is used to study the 3-colored designs held by codewords of xed composition in Type III codes containing the all-one codeword. In particular the ternary Golay code contains 3-colored 3-designs. We conjecture that every weight class in a Type III code with the all-one codeword holds 3-colored 3-designs.

متن کامل

Tricolore designs in Type III codes

A split complete weight enumerator in six variables is used to study the colored designs held by codewords of xed composition in Type III codes containing the all one codeword In particular the ternary Golay code contains colored designs We conjecture that every weight class in a Type III code with the all one codeword holds colored designs Introduction Colored designs were introduced in to stu...

متن کامل

On the support designs of extremal binary doubly even self-dual codes

Several errors in the original publication of this article are noted. It has been corrected in this erratum. Theorem 4.2 In the proof of Theorem 4.2, the computation of F(63,4·63+4;[0,2,4,6,8,10,12,14]) 10321920 is incorrect. We exchange “Let D′′ be a self-orthogonal . . . (page 535, line 5 up)” to Let D′′ be a self-orthogonal 8-(24m, 4m + 4, λ8) design, where λ8 = (5m−2 m−1 ) (4m−1)(4m−2)(4m−3...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applicable Algebra in Engineering, Communication and Computing

سال: 2022

ISSN: ['1432-0622', '0938-1279']

DOI: https://doi.org/10.1007/s00200-022-00571-6